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Abstract: The motion of particles such as spheres immersed in fluids represents an idealization of various industrial 

processes. Such as, sedimentation and fluidized suspensions, lubricated transport, or general unit operation processes. 

The motion of spheres falling through static fluids was studied. The objective was to study the different flow patterns 

and to predict the terminal falling velocity and drag coefficient of particles settling in Newtonian and non-Newtonian 

(shear-thinning) fluids. The velocity of a falling sphere was measured as a function of time and sphere density. 

Particles of different sizes and densities, beside different types of fluids such as engine oil, glycerine, and kerosene 

representing non-Newtonian (shear-thinning)] were used. Derived experimental data for solid spheres falling through 

Newtonian and non-Newtonian fluids were reported, using fluid properties and hydrostatics bench apparatus. 

Empirical equations were formulated and developed for predicting drag coefficient and terminal falling velocity of 

solid spheres falling through stagnant fluids.  
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1. INTRODUCTION 

 

The hydrodynamic properties of particles motions are very 

important in numerous industrial applications. These 

properties (viscosity, size, shape, density, etc) affect particle 

motions on fluids.[1] The fluid dynamic drag on a sphere and 

the terminal settling velocity of a single spherical particle in 

static fluid are of interest in numerous fields such as unit 

operation processes. The practical application without 

complicating features; may be suitable for study of particles 

motions. The free terminal velocity is a fundamental 

engineering parameter which must be determined in order to 

predict the hydrodynamic behaviour of particles within a flow. 

The flow past a sphere in a confined region is encountered in 

various applications such as falling ball viscometer, 

hydrodynamic chromatography, membrane transport, and 

hydraulic transport of coarse solids in pipes.[2]  Furthermore, 

numerous fluids of industrial importance display shear-

thinning characteristics which are conveniently approximated 

by the simple power law models, some of these non-

Newtonian fluids are; polymer melts, polymer solutions, food 

emulsions, suspensions and biological fluids [3].  

 

The objective of this work is to collect experimental data of 

falling particles of different sizes and densities.  Different 

types of Newtonian and Non-Newtonian fluids were used as 

media for free particle falling. It is intended also, to improve 

the well known published correlations for drag and terminal 

settling velocity that have been in use, based on the collected 

data and other data obtained from many previous 

investigations. The behaviour of a particle undergoing 

acceleration or retardation has been the subject of a very large 

number of investigators.  The results obtained by different 

workers were not consistent. It is although shown that the drag 

factor is often related, not only to the Reynolds number, but 

also to the particle diameters, the distance travelled by the 

particle since the initiation of the motion, the hydrodynamic 

equations which control the motion of particle in fluid [4]. 

 

2. MATERIALS AND METHODS  

 

 Data has been collected for the falling velocities of single 

spheres in Newtonian and non-Newtonian fluids using glass, 

steel, plastic and rubber balls of different diameters. The 

properties of the spheres are shown in Table 1. Also different 

types of fluids were used; distilled water, (the oil type) oil, 

glycerine and kerosene. Physical properties of these fluids are 

shown in Table 2. 
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Table  1. Properties of solid spheres used in the tests 

Sphere Weight(g) 

 

Diameter 

(m)×     

Density (kg/m
3
) 

Glass(1) 9.10 1.89 2574.00 

Glass(2) 4.90 1.55 2513.00 

Plastic 5.40 1.64 2338.00 

Rubber 8.03 2.19 1460.00 

Steel(1) 1.00 0.65 6954.00 

Steel(2) 0.50 0.49 8116.00 

Steel(3) 0.42 0.45 7800.00 

 

Table  2. Properties of fluids tested 

Temperature 

(
◦
C) 

Density (kg/m
3
) Fluids 

31.0 1255.00 Glycerine (100%) 

31.0 0995.34 Distilled water 

31.0 0880.00 Lub Oil (grade (50)) 

31.0 0817.00 Kerosene 

 

2.1   Experimental Procedure  

 

Single particle was placed on the fluid surface at the centre of 

the tube and left for free falling. This usual technique was to 

attain the terminal falling velocity in a short period. A digital 

stop watch of precision (0.01 s) was used to measure the time 

required by the particle to cover the distance (100 cm) marked 

on the tube. The recorded times were only considered when 

the difference between two successive reading did not exceed 

1%. This was to ensure that the particle has attained its 

terminal falling velocity during the free falling.  Each run was 

repeated at least three times for each particle and an average 

was taken.  

 

2.2 Measurements of Solid Velocities Falling in 

Newtonian and Non-Newtonian Liquid   

 
Data collected for the falling velocities of single spheres in 

Newtonian and non-Newtonian fluids were calculated. From 

the measurements an average velocity for each combination of 

sphere – fluids was computed. Using the average velocities 

determined the solid – fluids properties were estimated. The 

parameters of interest (i.e. Vt, CD, Re) were then computed 

and recorded. Also apparent viscosity (dynamic viscosity) of 

fluids was calculated; by method of falling sphere [5].  Then 

estimated shear rates and shear stresses of fluids were 

calculated using the power law fluids (parameter n and k).    

The most common approach taken by previous investigators 

for predicting the terminal velocity was through the use of 

standard Newtonian relationships (CD–Re) using modified 

(non-Newtonian or generalized) Reynolds number. For power 

law fluids, the generalized Reynolds number was defined by, 

[6-7]. 

 

       k
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                                                       (1)

 

 

Where, k and n are two empirical curve-fitting parameters, are 

known as the fluid consistency coefficient and the flow 

behaviour index; respectively. For a shear-thinning fluid, the 

index may have any value between 0 and 1. The smaller the 

value of n, the greater is the degree of shear-thinning. Power-

law fluid behaviour and data correction for the shear rate (
  

  
) 

with which the shear rate reflects the definition of particle 

Reynolds number (Rep) shown in equation (2). 
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2.3 Dimensionless Parameters 

 
Several dimensionless parameters were used to describe the 

hydrodynamic equations. They include: 
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When used non-Newtonian fluids the dimensionless include 

apparent viscosity    and the power law parameter n and k. 

[7].  
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where, 

Ar: Archimedes number.   
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Two sources were used for the behaviour of fluids [8]. Table 3 

shows the Range of Re and power law parameter. 
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Table 3. Comparison of Re and Power Law Parameter range 

with literature 

Source  Re K (kg.s
n
/m

2
) n 

Non-

Newtonian 

 

Case Study 12 - 370 0.028 – 0.788 0.587 – 0.971 

Kelessidis [7] 1 – 64 0.020 – 0. 270 0.750 – 0.920 

Miura [7] 4 - 770 0.170 – 0.590 0.560 – 0.780 

Newtonian  

Case Study 1 - 325 0.035 – 0.126 1.0 

Kelessidis [7] 16 - 1270 0.010 – 0.060 1.0 

 

3. RESULTS AND DISCUSSION 

 

Depending on the experimental results of the k and n values 

all the values of Reynolds number of the particles (Rep) were 

converted. The Archimedes’ number was plotted versus the 

particles Reynolds number for non-Newtonian fluids.  The 

regression analysis of these plots showed that the values of n 

and k are 0.779 and 0.403 respectively.  

 

For all the spheres used in the experimental work and power-

law liquid combination, the Archimedes number (Ar) can be 

evaluated. Then the particle Reynolds number can then be 

expressed in terms of Ar and n [9] as follows:      

              

     
baArRe                                                          (9) 

 

where,  









 n

n
a 73.0

51.0
exp1.0  and   160.0

954.0


n
b

 
The expression for (a) is erroneously printed without the 

multiplication factor of 0.1, and using the equation with the 

wrong coefficients gives always a considerably 

underestimated velocity [9]. So by the same approach propose 

similar expressed to evaluate experimental data.  Suggested 

simple empirical equation describes the relation between Ar 

and Re for non-Newtonian fluids, Fig. 1 as follows: 

 

         
baArRe                                                      (10) 

 

where,  
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n
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42.1
exp01.0   and   

 
160.0

881.0
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Covered the range 27 ≤ Ar ≤ 11775 and 1 ≤ Re ≤ 481, with   

R
2 

= 0.9915. Experimental data describe the parameters of 

interested, Ar, Rep, Re and CD predicted by equation (10), 

When used the value of n = 0.779 and substituted in equation 

(9) and (10) for the two constants   a, b.  it was Found that   a 

= 0.108 and b = 1.065. Compared with predicted   a = 0.062   

and    b = 0.971.  the error 8% for  b  and   42% for  a,  always 

the value of  a  corrected for given density of fluid (ρ),density 

difference (Δρ), sphere diameter (d), consistency index (k ) 

and the value of power law behaviour (n). Fig. 2 shows 

experimental data of drag coefficient related to the Reynolds 

number for non-Newtonian fluids. Fig.  3 shows predicted Re 

related to CD measured.  

 

Fig .1. Experimental data, (Archimedes’ number verse 

particles Reynolds number). 

 

 

          Fig. 2. Behaviour of non-Newtonian fluids 

 

 

Fig. 3. Experimental drag compared with prediction for 

Newtonian and non- Newtonian fluids 
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3.1 Drag Coefficient Formula Proposed 

The approach suggest plotting the drag coefficient versus 

particles Reynolds number on a logarithmic paper .then 

compare them with prediction by other investigators. Through 

the region flow of Newton’s law the parameters of interest Vt, 

CD, Rep, are estimated. By used nonlinear regression of 28 

data points, selected form 49 point. The best fitted supporting 

by trials and error methods [10-11]. Then we obtained simple 

an empirical equation to predict drag coefficient. The equation 

covered range of Reynolds number 2 ≤ Rep≤ 129635 for 

Newtonian and non-Newtonian fluids. CD is predicted with 

two terms, the first term can be considered as an extended 

Stokes’ law applicable approximately for Rep < 424 as, 

   

    
6.0Re

62.18

P

DC 

     

For   2 ≤ Rep ≤ 424                        (11) 

 

The second term for slight deviations from the Newton’s law 

for high particles Reynolds number, 
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EE
C PP
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                                                                                      (12) 

 

Figures 2 and 3 show the experimental data fitted of non-

Newtonian behaviour and the prediction of drag coefficient 

compare with experimental. Figures 4-6 show also 

comparison of drag measured and predicted with (SDC) and 

other investigators [9]. 

 

3.2 Root Mean Square  

 Equation of the general form given in the four most recent 

correlations were sought, with the parameters determined by a 

local minimization of the sum of the squared errors, Q, 

defined as [12]. 

 

N

Q
RMS 

  

                                                     

 
(13) 

            where    2
exp Pr

loglog 
eDD CCQ

                                                                   
So for correlation the predicted equations (11) and (12) to 

estimate drag coefficient find that, the RMS_CD value, 

computed and shown in Table (4).  

 

3.3 Data and Prediction Comparison  

Fig (5) shows the plotting of the non-Newtonian data for drag 

coefficient CD versus the Reynolds number Re. The 

Newtonian as well as the non-Newtonian data is plotted in Fig 

(6). Data from other investigators are also plotted, both non-

Newtonian data and Newtonian data [9].  

 

Table (4) RMS_CD values. 

 Newtonian and non-

Newtonian 

Non-Newtonian 

only 

RMS_CD 0.041 0.062 

 

 

Fig.4.  Comparison of experimental data of drag related to 

Reynolds No 

 

Fig. 5. Comparison of experimental measurements with 

regression equations results, non- Newtonian data. 

 

Fig. 6. Comparison of experimental measurements with 

regression equations results, non-Newtonian and 

 Newtonian data. 
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3.4 Correlation Terminal Setting Velocity 

On the other hand from experimental data analysis obtained 

through different particles diameter used and the Grace 

Method for the solution of the settling-velocity equation [12-

13].  For terminal falling velocity as function of diameter, 

using two dimensionless parameters, (Vt
*
 and d

*
) shown in 

Figures (7) and (8). The proposed formulas for Newtonian and 

non-Newtonian fluids are as follows: 

        89.2log35.0log5log3log **4*7* 23

  ddEdEVt

                                                                                            (14) 

0.74 ≤ Vt
*
 ≤ 142   and 4 ≤ d

*
 ≤ 935 

 

For non-Newtonian fluids, 

       32 **** log0031.0log07.0log35.030.1log dddVt 

                                                                                           (15) 

0.77 ≤ Vt
*
 ≤ 14 and 4 ≤ d

*
 ≤ 65 

 

 

Fig . 7. Dimensionless terminal velocity, V
*

t, as a function of 

dimensionless particle diameter, d
*
, for spheres falling in 

Newtonian fluids 

 

Fig .8. Dimensionless terminal velocity, V*t, as a function of 

dimensionless Particle diameter, d*, for spheres falling in 

non- Newtonian fluids. 

The purpose of most of the cited sphere drag experiments was 

to develop correlations describing either the drag coefficient 

or terminal velocity of a sphere. The results presented in the 

previous section are of great importance of drag coefficient 

prediction. Fig. 6 shows CD measured and predicted compared 

to SDC, very small variation for all Rep values less than 10
4
, 

that means the empirical equation can be extended to predict 

CD for Newtonian and shear-thinning fluids. 

 

 For all experimental data, indicates that the RMS_CD errors 

are around 0.06, shown in table (4). The deviation in 

experimental data of non- Newtonian compared with 

Kelessidis indicated that, are smaller in the range of low Rep 

(stokes region) and variation in intermediate Rep (creeping 

flow), are shown in Figs 5 and 6. Foregoing analysis has 

indicated that the terminal falling velocity of solid spheres 

through stagnant non-Newtonian shear thinning fluids can be 

predicted with engineering accuracy from various proposed 

correlations for Newtonian fluids. This can be achieved 

provided the apparent viscosity of the fluid is used, evaluated 

at a shear rate given as the ratio of the falling velocity to the 

sphere diameter. 

 

 

4. CONCLUSIONS 

 

Hydrodynamic equations of particles motion were 

investigated on this study. The behaviour of drag and terminal 

velocity on spherical particles flow in Newtonian and non-

Newtonian fluids were explored. This provided information 

such as the drag coefficient for particles of various sizes and 

density; which are much required parameters in CFD 

programs for the prediction and modelling of particle flow. It 

is recommended that the temperature effect must be 

considered, for fluids properties, because it has great effective 

on the dynamic viscosity which extended to shear rate and 

behaviour of particles motion. 

 

 The further work can be used for other types of fluids, such 

as visco-elastic and gaseous fluids. 
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Nomenclature 

 

Ar Archimedes’ number  dimensionless 

a Parameter assigned for equation (9) dimensionless 

b Parameter assigned for equation (10) dimensionless 

CD Drag coefficient dimensionless 

d Particle diameter cm 

d* Dimensionless particles diameter dimensionless 

K Consistency index dimensionless 

n Fluid flow behaviour index dimensionless 

Re Reynolds number dimensionless 

Regn Generalized Reynolds number dimensionless 

Rep Particle Reynolds number dimensionless 

V Solid terminal velocity m/s 

Vt  Particle terminal velocity m/s 

Vt* Dimensionless terminal velocity dimensionless 

Greek letters 

Δρ Density difference, (  − )/  g/cm
3
 

ρs Solid density g/cm
3
 

ρf Fluid density g/cm
3
 

μ Fluid viscosity g/cm.s 

   Apparent viscosity g/cm.s 

Subscripts 

a Apparent  

exp Experimental 

gn Generalized 

t Terminal  

p Particle  

pre Predicted  

s Solid  

* Dimensionless  

 

  Abbreviations 

RMS  Root Mean Square 

SDC Standard Drag Curve   

CFD Computational Fluids Dynamics 
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